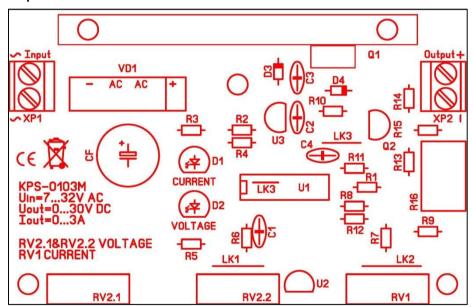
KPS-0103(M)


«Набор для сборки однополярного регулируемого лабораторного блока питания»

С помощью конструктора можно собрать лабораторный блок питания с регулировкой выходного напряжения в диапазоне 0-30В, ограничения тока нагрузки в диапазоне 0-3А и индикацией включения режима ограничения тока.

Технические характеристики:

✓ Входное напряжение постоянного тока	945B
✓ Входное напряжение переменного тока	732B
✓ Выходное напряжение	030B
✓ Ток нагрузки	03A
✓ Нестабильность напряжения на выходе	не хуже 1%

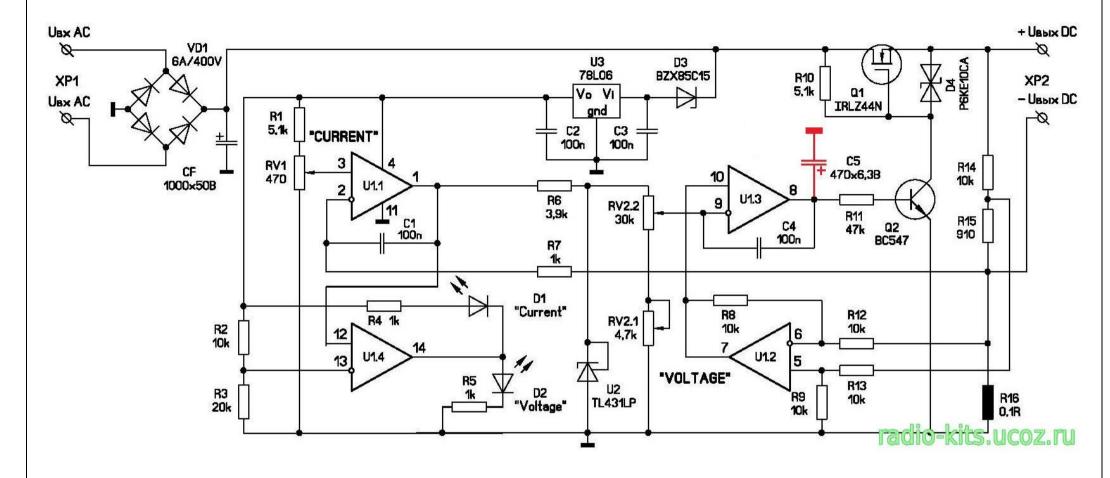
Размещение компонентов на печатной плате:

На печатной плате предусмотрены пять отверстий диаметром 3,2 мм. Два из них в верхней части платы для крепления радиатора, а остальные три для крепления самой платы в корпусе блока питания. Радиатор необходимо выбрать с площадью поверхности не менее 300 см кв. Транзистор Q1 необходимо закрепить, при необходимости, с применеием изолирующих теплопроводящих подложек. Переменные резисторы RV2.1, RV2.2 и RV1 можно закрепить на передней панели блока питания непосредственно при помощи штатных гаек.

KPS-0103(M)

Работа схемы:

Схема стабилизации напряжения собрана на U1.3 и U1.4. На U1.4 собран дифференциальный каскад, усиливающий напряжение делителя обратной связи, образованного резисторами R14 и R15. Усиленный сигнал поступает на компаратор U1.3, сравнивающий выходное напряжение с образцовым, сформированным стабилизатором U2 и потенциометром RV2. Полученная разница напряжений поступает на транзистор Q2, управляющий регулирующим элементом Q1. Ограничение тока осуществляется компаратором U1.1, который сравнивает падение напряжения на шунте R16 с опорным, сформированным потенциометром RV1. При превышении заданного порога, U1.1 изменяет опорное напряжение для компаратора U1.3, что приводит к пропорциональному изменению выходного напряжения. На операционном усилителе U1.2 собран узел индикации режима работы устройства. При понижении напряжения на выходе U1.1 ниже напряжения сформированного делителем R2 и R3, светится светодиод D1, сигнализирующий о переходе схемы в режим стабилизации тока.


Примечание:

В случае работы устройства от питающего напряжения ниже 23В, стабилитрон D3 необходимо заменить перемычкой. Так же, возможно питать слаботочную часть схемы от отдельного источника, подав напряжение 9-35В непосредственно на вход стабилизатора U3 и удалив стабилитрон D3.

Перечень деталей схемы:

Обозначение	Тип, номинал	Обозначение	Тип, номинал
VD1	KBU4K	D4	P6KE10CA
CF	470680 мкФх50В	D3	BZX85C15
R1, R10	5,1 кОм	U1	LM324
R2,R8,R9,R12,R13,	10 кОм	U2	TL431LP
R14			
R3	20 кОм	U3	78L06
R4, R5, R7	1 кОм	Q1	IRLZ24(34,44)N
R6	3,9 кОм	Q2	BC547
R11	47 кОм	RV1+крас. ручка	470(500) Om
R15	910 Om	RV2.1+зел. ручка	4,7 кОм
R16	0,1 Ом/5Вт	RV2.2+зел. ручка	30 кОм
D1	5мм, красный	C1, C2, C3, C4	0,1 мкФ
D2	5мм, зеленый	C5	470мкФх6,3В

KPS-0103(M) «Однополярный регулируемый лабораторный блок питания» схема электрическая принципиальная:

Примечание: конденсатор С5 установить навесным монтажом под печатной платой.

«Однополярный регулируемый лабораторный блок питания» Набор KPS-0103(M) http://radio-kits.ucoz.ru

(описание устройства найдено в сети Интернет)