Понедельник, 05.12.2016, 03:29
Главная
Регистрация
Вход
СДЕЛАЙ САМ!
Приветствую Вас Гость | RSS
Меню сайта
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0

Базовый приёмник коротковолновика на 80 м диапазон и пятидиапазонный конвертер конструкции Сергея Беленецкого (US5MSQ) на большом и тяжёлом низкочастотном ЭМФ RFT 200 родом из ГДР.

Приёмник разработан Сергеем Эдуардовичем Беленецким (US5MSQ). Подробное описание конструкции выложено на сайте автора здесь http://us5msq.com.ua Кроме того, там Вы сможете найти информацию по другим его конструкциям, задать вопросы на форуме, а также приобрести наборы для сборки.  Данная конструкция опубликована с любезного разрешения автора и, надеюсь, заинтересует не только опытных радиолюбителей, но и начинающих. Его принципиальная схема приведена здесь и на чертеже ниже. Описание работы и последовательность настройки подробно описаны на сайте Сергея Беленецкого в трёх частях: часть 1 здесь, часть 2 здесь и часть 3 здесь.

Основой этого приёмника послужил «большой и тяжёлый» »  ЭМФ RFT 200+E-0310/2, RFT 200+E-0310/4 производства ГДР. Пару лет назад, после массового списания устаревшей аппаратуры уплотнения связи, одно время много таких фильтров появилось на наших «блошиных» рынках. 

Название фильтра описывает его основные параметры и расшифровывается так:
200 – частота несущей в кГц
+E ­– полоса пропускания расположена выше частоты несущей (если -Е – то ниже частоты несущей)
-0310 – минимальное значение ширины полосы пропускания в десятках Гц, т.е. в данном случае не менее 3100 Гц  (типичное значение  немного больше – примерно 3350 Гц)
/2, /4 – варианты конструктивного исполнения, имеющие небольшие, несущественные для нас,  отличия в крутизне ската АЧХ , что сказывается на гарантированной величине подавления на частоте несущей. Для варианта /2 – не менее 20 дБ (тип. 30 дБ), а для /4 – не менее 25 дБ (тип. 40 дБ). Вот справочный лист на ЭМФ от RFT200
Вход и выход у него не равнозначны. Обратите внимание, что в отличие от привычного нам, боковая цветная метка на корпусе ЭМФ отмечает выход (а не вход)  ЭМФ. Второй отличительный признак – разное расстояние между выводами на входе и выходе. Оптимальное сопротивление источника сигнала для него 1,2 кОм, а оптимальное сопротивление нагрузки 2,5 кОм.  Сверху на корпусе фильтра, ближе к соответствующему краю, указаны рекомендуемые значения контурных емкостей (с точностью до третьего знака!).  Указанные выше высокие параметры обеспечиваются только при правильном включении и согласовании ЭМФ. Это очень наглядно продемонстрировал наш коллега RW6CO.
После изучения автором документации и практических испытаний он был просто очарован прекрасными характеристиками этих фильтров и решил непременно его «трудоустроить». Но низкая ПЧ (200 кГц) даже на низкочастотном популярном 80 м диапазоне не позволяет получить с не перестраиваемым ПДФ сколько-нибудь приличное подавление по зеркалке (подробнее о причина см. здесь). Так на частоте сигнала 3500 кГц оно будет всего-лишь порядка 10-12 дБ (3-4 раза), что явно не приемлемо. Здесь нам может помочь двухконтурный узкополосный перестраиваемый преселектор, благо что сейчас унифицированные трёхсекционные КПЕ от старых советских приемников (типа Океан, Рига и т.п.) найти не проблема.  Имеет смысл сразу при проектировании предусмотреть возможности по расширению сфер применения приемника без переделки платы:
— увеличения непрерывного диапазона перестройки вплоть до 3-кратного (всё зависит от величины растягивающих конденсаторов),
— подключение цифровой шкалы с ЦАПЧ,
— увеличение числа диапазонов до 4-5 путем подключения простого одно- или двухкварцевого конвертера, по частотному раскладу аналогичного применённому в ламповом супере, но тогда нужно диапазон принимаемых частот расширить до 3,3-3,8 МГц и предусмотреть возможность переключения боковой полосы. Такой пятидиапазонный (10, 15, 20, 40 и 80 м) приёмник с двойным преобразованием частоты был сделан и показал очень хорошие результаты, что и позволяет мне рекомендовать его для повторения. Давайте подробнее рассмотрим его схему и конструкцию.​
Базовый однодиапазонный приёмник на диапазон 80 м RX80RFTEMF
Основные параметры:
Чувствительность при с/ш=10 дБ примерно 1 мкВ, избирательность по зеркальному каналу 42-46 дБ (меньшее значение - на низкочастотном краю), АРУ очень эффективна, может быть даже слишком - начинает работать примерно с 5-6мкВ и при увеличении сигнала до 30 тыс. мкВ, т.е. 74-75дБ уровень на выходе меняется всего лишь на 7-8 дБ (с 0,35 до 0,8 Вэфф). Видимые искажения синуса на выходе заметны при уровнях на входе порядка 80-100 мВ. Максимальная выходная мощность на нагрузке 8 Ом не менее 80 мВт.
Принципиальная схема базового однодиапазонного варианта  приёмника показана на рисунке выше. Приёмник собирается на односторонней печатной плате с маской и маркировкой компонентов, размеры платы 75х134 мм. На плате крепится трёхсекционный КПЕ 3/10х430 пФ.
Он представляет собой супергетеродин с одним преобразованием. Приемник состоит из активного смесителя на транзисторе VT3, первого гетеродина на транзисторе VT1, усилителя промежуточной частоты (УПЧ) на транзисторе VT2, активного детектора смесительного типа на транзисторе VT8, второго гетеродина на транзисторе VT7 и  усилителя звуковой частоты (УЗЧ) на микросхеме DA2.
Сигнал величиной не менее 1 мкВ с антенного разъема подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре 0R1. По сравнению с одиночным потенциометром подобное решение обеспечивает бОльшую глубину регулировки  ослабления (более 60дБ) во всем КВ диапазоне, что позволяет обеспечить оптимальную работу приемника практически любой антенной. Далее сигнал через катушку связи L1 поступает на узкополосный (полоса пропускания примерно 60-70 кГц) перестраиваемый двухконтурный полосовой фильтр (преселектор) L2С2С3C5.1, L3С9C10С5.2 с емкостной связью через конденсатор С6. Число витков катушки связи L1 выбрано коммутируемым (2+7). Это позволяет без переделки катушки увеличить входное сопротивление приемника при работе с конвертером с 500 ом до 1 кОм и, соответственно, в 2 раза Кус конвертера.
Преселектор перестраивается трёхсекционным конденсатором переменной ёмкости (КПЕ) в диапазоне  3,3 -3,8 Мгц (с небольшим запасом по краям). Такой диапазон задан  величиной «растягивающих» конденсаторов  С2,С3 и С9,С10 соответственно.  Выделенный фильтром сигнал с катушки связи L4 через разделительный конденсатор С17 подается  на базу первого смесителя, выполненного на биполярном транзисторе VT3, включенного по схеме с общим эмиттером. Резистор R10 достаточно большого сопротивления, включенный в эмиттерную цепь транзистора VT3, создает глубокую отрицательную обратную связь (ООС). По переменному току он зашунтирован сопротивлением канала двухзатворного полевого транзистора VT5. Напряжение гетеродина величиной примерно 1-2 Вэфф, поступающее на первый затвор VT5, изменяет сопротивление канала сток-исток в широких пределах (от десятков ом до десятков кОм), тем самым вызывает модуляцию глубины обратной связи, т. е. фактически изменяет крутизну передаточной характеристики, не смещая рабочей точки транзистора VT3. Резистор R13 ограничивает минимальное сопротивление открытого канала примерно на уровне 120-140 ом, что определяет сравнительно глубокую начальную ООС (примерно 16-20 дБ) и обеспечивает тем самым повышенную линейность (помехоустойчивость) смесителя  и его перегрузочную способность – он без заметной блокировки «переваривает» сигнал помехи уровнем до 50-70 мВэфф (при заданном токе коллектора VT3 1 мА). Такой смеситель имеет низкий уровень шумов, сравнительно большую крутизну преобразования (примерно 1,5-2 мА) и подавляет сигнал гетеродина на выходе. Степень подавления сигнала гетеродина определяется проходной ёмкостью транзистора VT5  и достигает 50-60 дБ на верхних частотах КВ диапазона. Применение в качестве ключа смесителя двухзатворного полевого транзистора, имеющего хорошие линейные коммутационные характеристики, позволяет через второй затвор ввести АРУ, не ухудшающую динамические характеристики приемной части[Г.Брагин. Трансивер YES93]. Более того, при поступлении на вход приемника мощных сигналов, вызывающих срабатывание АРУ, минимальное сопротивление канал сток-исток существенно увеличивается, что приводит к увеличению глубины ООС и тем самым дополнительно повышает линейность (помехоустойчивость) смесителя.
Первый гетеродин приемника выполнен по схеме ёмкостной трёхточки на транзисторе VT1. Контур гетеродина составлен из катушки индуктивности L5 и конденсаторов С11С13С14. Частоту гетеродина можно перестраивать в диапазоне 3270…4030 кГц (с небольшим запасом по краям) третьей секцией КПЕ С5.3. Резисторы R3,R7 и R8 определяют режим работы транзистора по постоянному току. Развязывающая цепочка R11C19  защищает общую цепь питания от попадания в нее сигналов гетеродина и промежуточной частоты. VT4 выполняет функцию развязывающего (буферного) усилителя сигнала гетеродина, что практически полностью устраняет влияние частотомера на точность установки частоты. На элементах С4,R1,CD1,С7 выполнена исполнительная часть схемы цифровой автоподстройки частоты (ЦАПЧ) ГПД, реализуемой на основе цифровой шкалы Макеевская. Варикап можно применить практически любой. Подбором величины С7 ограничивают максимальный диапазон перестройки частоты ГПД варикапом примерно 800-1000 Гц ( подробнее см. описание ЦШ Макеевская). Если подключение такой ЦШ не планируется, то эти элементы можно не устанавливать или применить для точной подстройки частоты ГПД в качестве «цифрового верньера», подав на контакт разъёма J2.1 постоянное напряжение в диапазоне примерно +2…+9 В с дополнительного переменного резистора.
Поскольку оптимальное сопротивление источника сигнала для нашего ЭМФ всего 1,2 кОм и изготовителем настоятельно рекомендуется резистивное согласование ЭМФ, то при непосредственном подключении его к смесителю коэффициент преобразования получается небольшим – примерно 1-1,5 раза, что обусловит необходимость применения большого усиления сигнала после ЭМФ, а значит и чрезмерно высокого уровня собственных шумов приемника, что никак нельзя признать приемлемым. Поэтому после смесителя применен однокаскадный УПЧ, выполненный на транзисторе VT2, включенный для повышения линейности по схеме с общей базой. Согласование высокого выходного сопротивления смесителя (десятки кОм) с низким входным сопротивлением (десятки ом) УПЧ выполняется посредством контура L6С22С23, который при нагруженной добротности примерно 40-50 имеет полосу пропускания примерно 4-5 кГц и служит хорошим защитным (руфинг) фильтром для УПЧ. Для повышения экономичности применено последовательное питание каскада, т.е. ток коллектора VT3 поступает непосредственно в эмиттер VT2. Кус от базы VT3 до коллектора VT2 составляет примерно 40-60 раз.
Основную селекцию сигналов в приемнике, как уже отмечалось выше, выполняет ЭМФ Z1 немецкого производства RFT 200+E-0310 с полосой пропускания примерно 3,35 кГц. Его входная и выходная катушки возбуждения настраиваются в резонанс на промежуточной частоте 200 кГц соответственно конденсаторами С21 и С31, величина которых индивидуальна для каждого экземпляра фильтра и указана с точностью до трёх знаков сверху на корпусе фильтра, ближе к соответствующему краю. Как показала практика, такая точность избыточна, вполне достаточно подобрать эти ёмкости с точностью не хуже +-5%, т.е. их можно составить конденсаторов стандартного 5% ряда номиналов. Для этого на плате предусмотрено место для установки  двух конденсаторов. Очищенный от внеполосных шумов и помех сигнал поступает на второй смеситель (смесительный детектор), который выполнен по схеме, аналогичной первому смесителю, на транзисторе VT8. Его входное сопротивление в основном задаётся резисторами смещения базовой цепи R23R25, включенными по переменному току параллельно, и равно 2,5 кОм – оптимальной нагрузке для ЭМФ. Это позволило получить малое затухание сигнала в ЭМФ при минимально возможной неравномерности его АЧХ, поэтому на базе VТ8 величина сигнала составляет не менее 60…80 мкВ.
Второй гетеродин приемника выполнен по схеме ёмкостной трёхточки на транзисторе VT7. Контур гетеродина составлен из катушки индуктивности L7 и конденсатора С28,С30,С35. Стабильность частоты обычного LC генератора на данной частоте оказывается вполне достаточной. На полевом транзисторе VT9 выполнен электронный ключ, подключающий по сигналу управления к задающему контуру дополнительный подстроечный конденсатор С39, что необходимо для переключения принимаемой боковой полосы путём смещения частоты второго гетеродина на другой срез АЧХ ЭМФ. Напряжение +9 В, поданное через резистор R30 на сток VT9, запирает встроенный (конструктивный) защитный диод, включённый между стоком и истоком транзистора 2N7002, дабы он  не влиял на работу гетеродина. В режиме приема верхней боковой полосы (при замыкании контактов разъёма J3 USB) на частоту генерации примерно 204 кГц (точнее на верхний срез АЧХ ЭМФ по уровню -6дБ) гетеродин перестраивается подстроечным сердечником катушки L7, а в режиме приема нижней боковой полосы (при разомкнутых контактах разъёма J3 USB) на частоту генерации ровно 200 кГц подстроечным конденсатором С39. Резисторы R20,R22 и R29 определяют режим работы транзистора по постоянному току. Развязывающая цепочка R21C34С38 защищает общую цепь питания от попадания в нее сигналов гетеродина и промежуточной частоты. VT10 выполняет функцию развязывающего (буферного) усилителя сигнала гетеродина, что практически полностью устраняет влияние частотомера на точность установки частоты.
Напряжение сигнала второго гетеродина частотой около 200 кГц и величиной порядка 1 Вэфф  поступает на первый затвор VT6 и в результате преобразования спектр однополосного сигнала переносится с ПЧ в область звуковых частот. Коэффициент преобразования (усиления) детектора примерно 10…15.
Выделенный вторым смесителем на резисторе R27 сигнал звуковой частоты величиной порядка  0,7…1 мВ проходит через двухзвенный ФНЧ с частотой среза примерно 3 кГц, образованный цепью С43,R32,С45. Очищенный от паразитных продуктов преобразования  и остатков сигнала второго гетеродина сигнал поступает через разделительный конденсатор С44 на вход УЗЧ (вывод 3 DA2), сделанный на основе популярной LM386N-1[3]. Она включена по типовой схеме с Кус=200, что необходимо для получения требуемой чувствительности и обеспечения эффективной работы АРУ. Нагрузка УЗЧ  — регулятор громкости подключается через дополнительный однозвенный ФНЧ (R34,С51) с частотой среза примерно 3 кГц, дополнительно снижающий внеполосные шумы, что заметно повышает комфортность прослушивания эфира на современные широкополосные малогабаритные динамики или низкоомные телефоны, например компьютерные мультимедийные.
Усиленный УЗЧ сигнал детектируется диодами VD1,VD2 , и управляющее отрицательное напряжение АРУ поступает в цепь вторых затворов транзисторов VT5, VT6. Туда же подаётся необходимое для нормальной работы АРУ начальное открывающее напряжение величиной примерно +1,6В обеспечивает стабилизатор напряжения на светодиоде HL1 красного цвета. Применение в цепи выпрямителя  АРУ дополнительной пропорционально-интегрирующей R19C32 наряду с уменьшением емкости основного конденсатора С37 позволило несколько улучшить динамические свойства АРУ и существенно снизить вероятность появления щелчков при её работе. Развязывающая цепочка R18C26С27 защищает общую цепь управления АРУ от попадания в нее сигналов гетеродина и промежуточной частоты.
Конструкция:
Все детали приемника, включая КПЕ, кроме разъемов, переключателей и переменных резисторов, смонтированы на плате  из одностороннего фольгированного стеклотекстолита размером 75х134 мм. Авторский чертеж платы в формате lay можно скачать здесь. Фото собранной платы:
С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов – резисторы типоразмера 1206 (подходят и 0805), а конденсаторы – 0805 (причём в блокировочных и межкаскадных можно применять с любым диэлектриком, а в резонансных – только NP0(COG), имеющие малые потери и нулевой ТКЕ), электролитические — импортные малогабаритные. Термостабильные SMD конденсаторы больших номиналов трудно доступны, поэтому на плате для контурных конденсаторов второго гетеродина предусмотрена возможность установки в качестве С28 конденсаторы типа КСО, К31, а в качестве С30,С35 — современных малогабаритных металлоплёночных. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные.  В качестве биполярных  можно применить практически любые  современные SMD n-p-n транзисторы  с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п. В качестве VD1,VD2 подходят любые кремниевые малогабаритные диоды, в качестве HL1 подходит любой красный светодиод. КПЕ трёхсекционный  со встроенным верньером 1/3 от приемников семейства «Океан» или аналогичные. Дополнив его малогабаритным верньером, например от приемника Р-326, получим очень комфортную плотность настройки примерно 8 кГц/об.
Катушки приемника L1-L4 выполнены на  малогабаритных каркасах от малогабаритных катушек ПЧ 455 кГц  размерами 8х8х11 мм, от широко распространенных  недорогих импортных радиоприемников и магнитол, подстроечником которых служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Катушки L2-L3 содержат по 16 витков провода ПЭЛ, ПЭВ  диаметром 0,17-0,23 мм. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 2+7 витков, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 4 витка такого же провода. Гетеродинная катушка L3 намотана на импортном малогабаритном многосекционном каркасе контура ПЧ 10,7 МГц с размерами 10,5х10,5х15 мм (с выводами по квадрату 7,5 мм) . Она содержит 36 витков провода ПЭЛ (ПЭВ) диаметром 0,17-0,23 мм. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной ферритовой гильзой. Весь контур заключен в штатный латунный экран. При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив.
Налаживание:
Правильно смонтированный приемник с исправными деталями начинает работать, как правило, при первом же включении. Тем не менее, полезно провести все операции по наладке приемника в последовательности, изложенной ниже. Все регуляторы надо поставить в положение максимального сигнала, а сердечники катушек — в среднее положение. Сначала с помощью мультиметра проверяем на соответствие ( допустимо отклонение +-10%) режимы по постоянному току, указанные на схеме. В динамике должны прослушиваться  собственные шумы приемника.
Проведем простейшую проверку общей работоспособности основных узлов.
При исправном УНЧ прикосновение руки к выводу 3 DA2 должно вызывать появление в динамике громкого, рычащего звука. Прикосновение руки к базе VT8 должно привести к появлению такого же по тембру звука, но заметно меньшей громкости – это включилась в работу АРУ.
Для установки частоты второго гетеродина к разъему J4 подключаем частотомер(цифровую шкалу). Сначала замкнув контакты разъёма J3 подстройкой сердечника катушки L7 добиваемся частоты примерно 204 кГц (точнее частота гетеродина должна быть примерно на 270…300 Гц выше верхнего среза АЧХ ЭМФ по уровню – 6 дБ, но если сейчас точное значение этой частоты неизвестно, это можно сделать и позднее, при просмотре спектра принимаемых шумов эфира на экране программы SpectraLab). Далее размыкаем контакты разъёма J3 и подстройкой С39 выставляем частоту генерации точно равной 200 кГц.
Для укладки диапазона частот первого гетеродина к разъему J2 подключаем частотомер (цифровую шкалу).  Установив емкость КПЕ максимальной подстройкой сердечника катушки L5 добиваемся частоты генерации порядка 3470 кГц. Вращая ручку КПЕ убеждаемся, что верхняя частота генерации не менее 4020 кГц. Если это не так, немного уменьшаем С11 и повторяем всё заново.
Переходим к  настройке сигнального тракта. Подключаем к выходу приемника индикатор уровня выходного сигнала (миливольтметр переменного тока, осциллограф). Для настройки тракта УПЧ устанавливаем частоту ГСС в полосе пропускания ЭМФ (т.е. 201-202 кГц) и подключаем его в правому по схеме выводу конденсатора С24. Вращением сердечника катушки L6 добиваемся максимального уровня сигнала (максимальной громкости приема). Дабы АРУ не влияло на точность настройки по мере роста громкости следует при помощи плавного аттенюатора ГСС поддерживать уровень  сигнала на выходе УНЧ примерно 0,2-0,3В.
Далее подключаем ГСС на антенный вход  и выполняем настройку и сопряжение контуров преселектора: с начала на нижней частоте (3300кГц) диапазона подстройкой по максимуму сигнала индуктивности катушек L2,L3, а затем на верхней частоте (3800кГц) подстройкой триммеров С1, C8. В виду взаимозависимости этих регулировок так делаем 3-4 раза. Вот и вся настройка.
Усовершенствование конструкции:
Слишком большой уровень опорного гетеродина (VT7) приводит к повышенному уровню собственных шумов приемника и при неудачном раскладе соединительных проводов из-за наводок на входные цепи может привести к появлению на диапазонах поражённых частот, кратных гармоникам опорного гетеродина, т.е. с шагом порядка 200 кГц. Для получения меньшего уровня генерации транзистор VT7 работает в режиме малых токов и емкость связи С35 выбрана минимально возможной. Как показал опыт повторения приемника коллегами, успех запуска этого узла зависит от коэф. усиления конкретного экземпляра транзистора - при малом усилении генератор вообще не запускается, нужно увеличивать С35, при больших - получается слишком большой уровень опорного гетеродина - вплоть до 3...5 Вэфф.
Для улучшения повторяемости сделана небольшая доработка узла (см. обновлённую схему версии 3.2) - добавлен диодный ограничитель на двух последовательно включенных кремниевых диодах VD3,VD4 (BAV99). Теперь амплитуда напряжения опорного гетеродина жестко зафиксирована на уровне примерно 1,2 В и не зависит от разброса параметров транзистора. Конденсатора С35 и С40 увеличены. Диодная микросборка монтируется на свободных SMD контактах, обозначенных на плате как С28 (см. фото ниже).
В результате этой простой доработки не только улучшилась повторяемость, но и собственные шумы приемника понизились, а чувствительность выросла примерно в 1,5 раза. ;)
Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме.
 
Видео работы приёмника, практически первое подключение к антенне :)

1. Набор для сборки базового приемника "RX80RFTEMF":
а. Печатная плата с маской и маркировкой 135х75 мм (см. фото) - 125 грн.
б. Печатная плата с маской и маркировкой + полный комплект деталей, устанавливаемых на неё (состав набора здесь) - 590 грн. 
ВНИМАНИЕ! Многие начинающие радиолюбители спрашивают о возможности использования приёмника без цифровой шкалы и конвертера, как однодиапазонный вариант. Конечно же можно и нужно. На видео собрана плата базового приёмника на 80 м диапазон. К ней подключены питание, антенна и динамик. В дальнейшем Вы можете расширить возможности приёмника, установив конвертер и цифровую шкалу.
 
2. Набор для сборки пятидиапазонного КВ конвертера "5 BandConverter":
а. Печатная плата с маской и маркировкой 75х75 мм (см. фото)- 75 грн.
б. Печатная плата с маской и маркировкой + полный комплект деталей, устанавливаемых на неё (состав набора здесь) - 390 грн.
3. Комплект коммутационных, монтажных элементов и органов управления – 220 грн.
4. Набор для сборки буферного усилителя для ЦШ Уникальная (состав набора здесь)50 грн.
5. Трёхвходовая цифровая шкала:
а. Цифровая шкала Уникальная LCD ( ЖК индикатор) – 310 грн.
б. Цифровая шкала Уникальная LED (светодиодная) – 350 грн.
6. Электромеханический фильтр (ЭМФ) RFT MF200+E-0310/4 – 120 грн. 


КВ конвертер на 4/5 диапазонов

Для расширения количества принимаемых диапазонов нашего однодиапазонного приёмника мы применим  КВ конвертер, в результате чего получится  коротковолновый супергетеродин с двойным преобразованием частоты с переменной первой ПЧ и кварцованным первым гетеродином. Такое решение при относительно низкой ПЧ обеспечивает не только хорошую селективность как по соседнему каналу, так и зеркальному каналу во всём КВ диапазоне, но и высокую стабильность частоты настройки. Благодаря чему подобная структура построения КВ приёмников (и трансиверов, например легендарный UW3DI) была очень популярна в досинтезаторную эпоху. Поскольку расширение числа КВ диапазонов такого приёмника ограничивается только наличием кварцев для первого гетеродина на нужные частоты, что как и в былые времена, так, к сожалению, и сейчас, в нынешних непростых экономических условиях, представляет определённую проблему, был  разработан конвертер, охватывающий основные КВ диапазоны всего на одном (максимум – на двух) кварцевых резонаторах. 
 

 
Описание и схемы конвертера находятся на отдельной страничке здесь >>>


Для покупки наборов обращайтесь сюда >>> или сюда >>>

Всем удачи, мирного неба, добра, 73!

 
 
 
Вход на сайт
Поиск
Календарь
«  Декабрь 2016  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031
Архив записей
Друзья сайта
УКВ комитет Лиги Радиолюбителей Украины Товары для радиолюбителей Синтезаторы, эквалайзеры, компрессоры, эхо-процессоры для трансивера

| Copyright MyCorp © 2016 | Сделать бесплатный сайт с uCoz |