Вторник, 06.12.2016, 13:14
Главная
Регистрация
Вход
СДЕЛАЙ САМ!
Приветствую Вас Гость | RSS
Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Трехдиапазонный приемник на 20, 40 и 80 м радиолюбительские диапазоны на двухзатворных полевых транзисторах (RX204080EMF)

Приёмник разработан Сергеем Эдуардовичем Беленецким (US5MSQ). Подробное описание конструкции выложено на сайте автора здесь http://us5msq.com.ua Кроме того, там Вы сможете найти информацию по другим его конструкциям, задать вопросы на форуме, а также приобрести наборы для сборки.  Данная конструкция опубликована с любезного разрешения автора и, надеюсь, заинтересует радиолюбителей. Его принципиальная схема приведена здесь и на чертеже ниже. Описание работы и последовательность настройки подробно описаны здесь и в двух частях здесь и здесь.


 



Сигнал с антенного разъема подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре R25 и далее через катушку связи L1 поступает на двухконтурный полосовой диапазонный  фильтр (ПДФ) L2C5С11, L3C17С21 с емкостной связью через конденсатор С10. Переключение диапазонов производится трёхпозиционным переключателем. В положении контактов, показанном на схеме включен диапазон 14 МГц.  При переключении на 7 МГц к контурам подключаются дополнительные контурные конденсаторы С4С9 и С16С20, смещающие  резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С15. При переключении на диапазон 3,5 МГц  к контурам ПДФ подключаются соответственно конденсаторы С8С14 и С13. Для расширения полосы на 80 м диапазоне введены резисторы R1 и R2. Этот трехдиапазонный ПДФ рассчитан на применение большой, полноразмерной антенны и сделан по упрощенной схеме всего на двух катушках, что оказалось возможным благодаря нескольким особенностям - верхние диапазоны, где требуется бОльшие чувствительность и селективность — узкие (меньше 3%), нижний 80 м, где очень высок уровень помех и вполне достаточно чувствительности порядка 3-5 мкВ - широкий (9%). Примененная схема имеет самый большой коэффициент передачи по напряжению на 14 Мгц с почти пропорциональным частоте снижением в сторону 3,5 Мгц, причем  избирательность по зеркальному каналу при ПЧ 500 кГц даже на 14 Мгц будет порядка 30 дБ — вполне приличное значение, учитывая, что в полосе 13-13,35 Мгц нет мощных вещательных станций.
Выделенный ДПФ сигнал подается на первый затвор полевого транзистора VT1. На второй его затвор поступает напряжение гетеродина величиной порядка 1…3 Вэфф. Сигнал промежуточной частоты, являющийся суммой или разностью частот гетеродина и сигнала, величиной порядка 25…35 мкВ выделяется в цепи стока смесителя контуром, образованным индуктивностью обмотки ЭМФ Z1 и конденсаторами С23С23. Развязывающие цепочки R9C25 и R19C46 защищают общую цепь питания смесителей от попадания в нее сигналов гетеродина, промежуточной  и звуковой частоты.
Приемник работает очень чисто, даже без аттенюатора без заметных на слух перегрузок держит сигнал – уровнем как минимум до S9+40 дБ. Чувствительность при с/шум=10 дБ не хуже 3 мкВ (80 м) и 1 мкв (40 и 20 м). Ток потребления в покое - порядка 20 мА и не более 50 мА при максимальной громкости на динамик 8 Ом.
Гетеродин выполнен по схеме индуктивной трехточки (схема Хартли) на полевом транзисторе VT3. Контур гетеродина содержит катушку L5 и конденсаторы С18,С19. Конденсатором переменной емкости (КПЕ) С51 частота генерации перестраивается в пределах 13,48-13,87 МГц. При переключении на 7 МГц к контуру параллельно С18 и С19 подключаются дополнительные растягивающие конденсаторы С6 и С7,С12, смещающие  диапазон перестройки частоты до 7,48-7,72 МГц. При переключении на диапазон 3,5 МГц  подключаются соответственно конденсаторы С1  и С2С3, а диапазон перестройки ГПД равен 3,98-4,32 МГц. Связь контура с цепью затвора  VT3 осуществляется посредством конденсатора С22, на котором, благодаря  выпрямляющему действию p-n перехода диода VD1, образуется отрицательное напряжение автосмещения, достаточно жестко стабилизирующее амплитуду колебаний в широком диапазоне частот. Так, например, при возрастании амплитуды колебаний  запирающее выпрямленное напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС). Собственно, ПОС получается при протекании тока  транзистора по части витков катушки L5. Отвод к истоку сделан от 1/3 части общего числа витков.
Сигнал ГПД подается на второй затвор смесителя VT2 через  буферный истоковый повтотитель VT1. Это вызвано тем, что на верхнем 20 м диапазоне при ПЧ 500 кГц частоты настройки контуров ДПФ и ГПД очень близки, поэтому реактивное сопротивление контура ГПД для частоты сигнала велико и сильные эфирные сигналы (уровнем S9+40 дБ и более) через межзатворную емкость смесителя VT2 попадают  непосредственно в контур ГПД, что приводит пусть к небольшой, но заметной на слух, паразитной модуляции — в принимаемом сигнале появляется неприятный  призвук. Применение  истокового повторителя VT1 полностью устраняет этот эффект, но при этом ток потребления приемника в покое увеличился до 20 мА. Все детали приемника, кроме разъемов, переменных резисторов и КПЕ, смонтированы на плате  из одностороннего фольгированного стеклотекстолита размером 68х95 мм. Авторский чертеж платы со стороны печатных проводников приведен на фото.
Основную селекцию сигналов в приемнике выполняет ЭМФ Z1 с полосой пропускания 2,35; 2,75; 3,0 или 3,1 кГц со средней, нижней или верхней полосой пропускания. В зависимости от типа примененного ЭМФ селективность по соседнему каналу (при расстройке на 3 кГц выше или ниже полосы пропускания) достигает 60…70дБ. С его выходной обмотки, настроенной конденсаторами С33С35 в резонанс на промежуточную частоту, сигнал поступает на детектор, который выполнен по схеме, аналогичной первому смесителю, на полевом транзисторе VT5. Его высокое входное сопротивление позволило получить минимально возможное затухание сигнала в ЭМФ основной селекции (порядка 10-12 дБ), поэтому на первом затворе величина сигнала составляет не менее 8…10 мкВ.
Второй гетеродин приемника выполнен на транзисторе VT4 почти по такой же схеме, что и первый, только вместо индуктивности применен керамический резонатор ZQ1. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора, т.е. частота колебаний находится между частотами последовательного и параллельного резонансов.  Нередко в подобных приемниках во втором гетеродине используют довольно дефицитный комплект - кварцевый резонатор на 500 кГц и ЭМФ с верхней полосой пропускания. Это удобно, но заметно удорожает приемник. В нашем приемнике в качестве частотозадающего элемента применен широко распространенный керамический резонатор на 500 кГц от пультов ДУ, имеющий достаточно  широкий межрезонансный интервал ( не менее 12-15 кГц). Подстройкой емкости конденсаторов С36 37 второй гетеродин легко «тягается» по частоте в диапазоне, как минимум 493-503 кГц  и, как показал опыт, при исключении прямых температурных воздействий  обеспечивает достаточную для практики стабильность частоты. Благодаря этому свойству, для нашего приемника подходит практически любой ЭМФ со средней частотой около 500 кГц и полосой пропускания 2,1…3,1 кГц. Это может быть, скажем, ЭМФ-11Д-500-3,0В или ЭМФДП-500Н-3,1 или ФЭМ-036-500-2,75С, использованный автором, с буквенными индексами В, Н, С. Буквенный индекс указывает, какую боковую полосу относительно несущей выделяет данный фильтр — верхнюю (В) или нижнюю (Н), или же частота 500 кГц приходится на середину (С) полосы пропускания фильтра. В нашем приемнике это не имеет значения, поскольку при налаживании частоту второго гетеродина устанавливают на 300 Гц ниже полосы пропускания фильтра, и в любом случае будет выделяться верхняя боковая полоса. Требуемую частоту второго гетеродина для конкретного ЭМФ с полосой пропускания П (кГц) можно определить по простейшим формулам:
- для ЭМФ с верхней полосой F=500 кГц,
- для ЭМФ со средней полосой F(кГц)=499,7 - П/2,
- для ЭМФ с нижней полосой F(кГц)=499,4 - П. 
Напряжение сигнала второго гетеродина частотой около 500 кГц (в авторском экземпляре 498,33 кГц) и величиной порядка 1,5…3 Вэфф  поступает на второй затвор VT5 и в результате преобразования спектр однополосного сигнала переносится с ПЧ в область звуковых частот. Коэффициент преобразования (усиления) детектора примерно 4.
Выделенный вторым смесителем на резисторе R16 сигнал звуковой частоты величиной порядка  30-40 мкВ проходит через трехзвенный ФНЧ с частотой среза примерно 3кГц, образованный цепью С40R17С38R18С42. Очищенный от паразитных продуктов преобразования  и остатков сигнала второго гетеродина сигнал поступает через разделительный конденсатор С41 на вход УЗЧ (вывод 3 DA2), сделанный на основе популярной LM386N-1. Для получения требуемой чувствительности и обеспечения эффективной работы АРУ, коэффициент усиления УЗЧ повышен до 500 благодаря включению цепи R21С43 в цепи ООС. Нагрузка УЗЧ - регулятор громкости подключается через дополнительный однозвенный ФНЧ (R23С48) с частотой среза примерно 3кГц, дополнительно снижающий внеполосные шумы, что заметно повышает комфортность прослушивания эфира на современные широкополосные малогабаритные динамики или низкоомные телефоны, например компьютерные мультимедийные.
Усиленный УЗЧ сигнал детектируется диодами VD1,VD2 , и управляющее напряжение АРУ поступает в цепь затвора регулирующего VT6. 
Как только величина регулирующего напряжение превысит пороговое (примерно 1В), транзистор открывается и образованный им совместно с резистором R18 делитель напряжения  за счет отличных пороговых свойств такого регулятора весьма эффективно стабилизирует выходной сигнал звуковой частоты на уровне примерно 0,65-0,7 Вэфф, что соответствует максимальной выходной мощности примерно 60 мВт, а на 16 Ом - 30 мВт и приемник будет достаточно экономичным. При такой мощности современные импортные динамики с высоких КПД  способны озвучить трехкомнатную квартиру, а вот для некоторых отечественных динамиков может показаться маловато, тогда можно повысить в 2 раза порог АРУ, установив в качестве VD1,VD2 красные светодиоды, при этом питание УНЧ нужно будет поднять до 12 В.
Приёмник собирается на плате из одностороннего фольгированного стеклотекстолита размерами 95х68 мм с маской и маркировкой. Следует обратить внимание на то, что применены пассивные радиокомпоненты для поверхностного монтажа типоразмера 0805 и 1206, транзисторы и диоды в корпусах SOT-143 и SOT-23, электролиты и подстроечные конденсаторы выводные.


Привожу немного фотографий пошаговой сборки приёмника:

 



На плате предусмотрено посадочное место под три наиболее распространенных конструктива ЭМФ (круглых и прямоугольных). С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов - резисторы и дроссель L6 типоразмера 1206, а конденсаторы 0805, электролитические - выводные импортные малогабаритные. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. В качестве SA1,SA2  применены переключатели  П2К с независимой фиксацией и четырьмя переключающими группами. Технологические перемычки "джамперы" J1,J2, подобные применяемым на компьютерных материнских платах и адаптерах.
В качестве VT1,VT3  можно применить практически любые  современные полевые транзисторы с p-n переходом, с начальным током стока не менее 5-6мА  – BF245В,С, J(U)309 -310, КП307Б, Г, КП303Г, Д, Е, КП302 А,Б. В качестве VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п.
Катушки приемника L1-L4 выполнены на  малогабаритных каркасах от малогабаритных катушек ПЧ 455 кГц  размерами 8х8х11 мм, от широко распространенных  недорогих импортных радиоприемников и магнитол, подстроечником которых служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Катушки L2-L3 содержат по 9 витков провода ПЭЛ, ПЭВ  диаметром 0,13-0,23 мм. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 1 виток, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 5 витков такого же провода. Гетеродинная катушка L3 намотана на импортном малогабаритном многосекционном каркасе контура ПЧ 10,7 МГц. Она содержит 19 витков провода ПЭЛ (ПЭВ) диаметром 0,13-0,17 мм, отвод от 7 витка. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Весь контур заключен в штатный латунный экран.
При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив.
В режиме покоя или при работе на высокоомные головные телефоны приемник довольно экономичен - потребляет ток порядка 12 мА. При максимальной громкости звучания, подключенной к его выходу динамической головки сопротивлением 8 Ом, потребляемый ток может достигать 45 мА. Блок питания годится любой промышленного изготовления или самодельный, обеспечивающий стабилизированное напряжение +9…12 В при токе не менее 50 мА. Для автономного питания удобно применять  батарейки, размещенные в специальном контейнере или аккумуляторы. Например, аккумулятора на 8,4 В размером с «Крону» и емкостью 200 мА/час хватает более чем на 3 часа прослушивания эфира на динамик  при средней громкости, а при применении высокоомных телефонов - более 10 часов.

Настройка приёмника:
При исправном УНЧ прикосновение руки к выводу 3 DA2 должно вызывать появление в динамике громкого, рычащего звука. Прикосновение руки к общей точке соединения С36R17R18 должно привести к появлению такого же по тембру звука, но заметно меньшей громкости – это включилась в работу АРУ. Проверяем токи стоков ДПТ по падению напряжения на истоковых резисторах R7 и R14, если оно превышает 0,44 В, т.е. ток стока ДПТ превышает 2мА, нужно, увеличивая сопротивление истоковых резисторов, добиться уменьшения тока до уровня порядка 1-1,5 мА. 
Далее, подключив высокоомный вольтметр (например, китайский цифровой мультиметр) через развязывающий резистор 51-100 кОм к затвору VT3, убеждаемся, что на всех диапазонах отрицательное напряжение автосмещение не менее 1В. Затем по падению напряжения на R4 проверяем ток стока VT1 и если он более 7-8 мА, увеличиваем R4 до получения требуемого, допустимо порядка 5-8 мА. Затем снимаем технологическую перемычку (джампер) J1  и вместо нее к этому разъему подключаем частотомер и приступаем к укладке диапазонов ГПД, которую начинаем с диапазона 20 м (переключатели SA1, SA2 отжаты). Подбором растягивающих конденсаторов С18С19 добиваемся требуемой ширины перестройки (с небольшим запасом – порядка 15-20 кГц по краям), а сердечником катушки L5 совмещаем начало диапазона и больше катушку не трогаем. Далее, нажав переключатель SA2, переходим к укладке  диапазона 40 м, для чего  сначала устанавливаем триммер С12 в среднее положение (это легко определить по изменению частоты при его регулировке), подбором  растягивающих конденсаторов С6С7 добиваемся как требуемой ширины перестройки, так и примерного совпадения начала диапазонов, после чего подстройкой С12 совмещаем их более точно. Затем переходим на диапазон 80 м (отжав SA2 и нажав SA1) и аналогично, подбором растягивающих конденсаторов С6С7,  укладываем его границы и триммером С3 совмещаем начало диапазона с предыдущими. 
При указанной выше конструкции катушки и использовании термостабильных конденсаторов группы NPО (а по сведениям автора к ним относятся практически все импортные SMD конденсаторы емкостью менее 910 пФ) стабильность частоты получилась вполне приличной - после 15 мин прогрева приемник держит SSB станции не менее получаса на 20 м диапазоне и не менее часа - на нижних и это без всяких дополнительных усилий по термокомпенсации. 
Настройку контуров ДПФ можно сделать по упрощенной методике и  следует начинать с диапазона 80 м. Подключив к выходу приемника индикатор уровня выходного сигнала (милливольтметр переменного тока, осциллограф, а то и просто мультиметр в режиме измерения напряжения постоянного тока к выводам конденсатора С42) устанавливаем частоту ГСС на середину диапазона, т.е. 3,65МГц. Расчетная АЧХ ПДФ на этом диапазоне широкая «двугорбая», с провалом в середине диапазона примерно на 1дБ.
Чтобы правильно настроить этот ПДФ без ГКЧ, воспользуемся следующим приемом. Временно зашунтируем катушку L3 резистором 150-220 Ом и настроившись приемником на сигнал ГСС  вращением сердечника катушки L2 добьемся максимального уровня сигнала (максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень  сигнала на выходе УНЧ примерно 0,3-0,5 В. Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему диапазону.  Если вращением сердечника (в обе стороны) не получается зафиксировать четкий максимум, т.е. сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора. Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсатора  контура С5(или С11) надо немного уменьшить, как правило (если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс. И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсатора  контура С5(или С11)  надо увеличить.  После этого перенесем шунтирующий резистор на катушку L2 и вращением сердечника катушки L3 добьемся максимального уровня сигнала. Вот теперь ПДФ диапазона 80 м настроен правильно. Больше катушки не трогаем и переходим на диапазон 20 м и 40 м. АЧХ ПДФ этих диапазонов узкие, одногорбые, поэтому они настраиваются просто по максимуму сигнала в средней части диапазона – частоты соответственно 14,175 и 7,1 МГц. Сначала настраиваем ПДФ диапазона 20 м регулировкой триммеров С5С21, а затем – 40 м, соответственно  регулировкой триммеров С4С20. При достаточно большой антенне настройку ПДФ по приведенной выше методике можно сделать  непосредственно по шумам (сигналам) эфира, памятуя, что лучшее прохождение, а значит, более сильные сигналы,  на диапазонах 80 и 40 м будут в темное время суток, а на 20 м – в светлое.




Набор для сборки приемника RX204080EMF предлагается к продаже в нескольких вариантах:
Понятное дело, что найти новенький без следов пайки в упаковке ЭМФ в настоящее время нелегко, а если и найдётся такой, то его стоимость будет сравнима со стоимостью данного набора для сборки приёмника :) поэтому комплектую квадратными ЭМФ, в основном 2,75...3,1 В и Н, есть некоторое количество ЭМФ с полосой 2,35 с буквами В и Н. Кому нужны отдельно кварцы 500 кГц и 501 кГц - есть немного в наличии. Все ЭМФ рабочие :) Блок КПЕ не входит ни в один из наборов, поскольку наверняка у каждого радиолюбителя в столе есть "десяток ненужных" КПЕ от старых радиоприёмников :)

Все вопросы связанные с конструкцией данного приёмника обсуждаются здесь на форуме Сергея Беленецкого (US5MSQ).
1. Печатная плата с маской и маркировкой (см. фото выше) - 100 грн.
2. Печатная плата с маской и маркировкой + комплект деталей (кроме блока КПЕ и без ЭМФ), устанавливаемых на неё - 320 грн.
3. Печатная плата с маской и маркировкой + комплект деталей (всё кроме блока КПЕ), устанавливаемых на неё - 470 грн.
4. Печатная плата с маской и маркировкой + полный комплект деталей (кроме блока КПЕ), включая все органы регулировки, разъёмы,провода - 580 грн.
Если необходимо, то могу припаять все элементы поверхностного монтажа, стоимость пайки - 150 грн.

Состав набора (перечень радиодеталей и компонентов) приведён в таблице здесь.
Цветами отмечены разные комплектации.

ВИДЕО РАБОТЫ ПРИЁМНИКА:




Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Всем мирного неба, удачи, добра, 73!




Подключение ЦШ к приемнику RX204080EMF

Изначально этот приёмник мной проектировался как простой и экономичный с механической шкалой, подключение ЦШ к разъёму (технологической перемычке) J1 предполагалось только при настройке (укладке диапазонов) частоты ГПД, поэтому цепи управления ЦШ в режиме учёта (складывания или вычитания) значения ПЧ при переходе с нижних на верхние КВ диапазоны не было предусмотрено...
Но жизнь диктует свои правила и многие коллеги, повторившие приемник, сейчас хотят установить в приемник ЦШ. 
Как простой и недорогой в реализации компромиссный вариант, не требующий лезть в работающий приемник с паяльником, возможно применение 5 разрядного частотомера/ЦШ.
Он в режиме ЦШ умеет суммировать или вычитать ПЧ, но само переключение этих режимов производится кнопкой программирования, т.е. в ручном режиме, поэтому она хороша именно как экономичный частотомер с автоматическим переключением диапазонов и как ЦШ в приемниках (трансиверах), где режим счёта (суммирование или вычитания) задается только один раз - при установке ЦШ. Это целый ряд бытовых или старых военных приемников, коротковолновые приемники (трансиверы) рассчитанные на работу либо только на НЧ или только на ВЧ диапазонах. 
Для применения в нашем же приемнике значение ПЧ=496,3 кГц уже зашито в таблице прошивки, но при переходе на 20 м диапазон всё равно придётся кнопкой (её при этом лучше вывести на переднюю панель) перепрограммировать режим счёта, что в общем-то не очень кузяво... :) 
При применении типовых ЦШ, дабы автоматизировать при смене диапазонов, переключение режима учёта значения ПЧ схема приемника должна сформировать соответствующий сигнал управления для ЦШ, но свободной контактной группы у переключателей диапазонов в приемнике нет. 
Поэтому нам нужно научить переключатель диапазонов ГПД выполнять две функции: по переменному току - переключать диапазоны, а по постоянному току - коммутировать электронный ключ 0VT1 цепи управления ЦШ, для чего потребуется небольшая доработка (см. схему ниже, вновь устанавливаемые детали показаны красным цветом). 
На диапазоне 20 м транзистор 0VT1 открыт напряжением +6В поступающий через резистор 0R4. При переключении на диапазоны 40 или 80 м к затворной цепи подключаются соответственно шунтирующие резисторы 0R3 или 0R2 и напряжение на затворе 0VT1 уменьшается до уровня не более +0,4В, что существенно ниже порогового напряжения открывания (не менее 1В для 2N7000 или 2N70002) и транзистор закрывается. Т.о. производится управление режимом счёта ЦШ. Фильтр 0R1,0C1 исключает попадание переменного напряжения ГПД на затвор полевого транзистора.
Резисторы 0R2,0R3 в SMD исполнении типоразмера 0805 можно припаять непосредственно на конденсаторы С2,С7, а выводной резистор 0R4 между шиной +6В и общей точкой С18,С19 со стороны печатных проводников, т.к. показано на рисунке. Если это затруднительно, то можно обычные выводные резисторы припаять со стороны установки деталей прямо на контакты переключателя, как показано на втором рисунке.
0VT1,0R1 и 0C1 удобнее всего смонтировать на маленькой макетке и укрепить прямо на КПЕ, благо крепёжных отверстий там хватает.
Ну и разумеется. что ЦШ нужно запрограммировать так, чтобы при замкнутом ключе она прибавляла значение ПЧ к измеренной частоте ГПД, а при разомкнутом - вычитала.




Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Всем мирного неба, удачи, добра, 73!

Вход на сайт
Поиск
Календарь
«  Декабрь 2016  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031
Архив записей
Друзья сайта
УКВ комитет Лиги Радиолюбителей Украины Товары для радиолюбителей Синтезаторы, эквалайзеры, компрессоры, эхо-процессоры для трансивера

| Copyright MyCorp © 2016 | Сделать бесплатный сайт с uCoz |